skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Haldar, Justin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Imaging 3D nano-structures at very high resolution is crucial in a variety of scientific fields. However, due to fundamental limitations of light propagation we can only measure the object indirectly via 2D intensity measurements of the 3D specimen through highly nonlinear projection mappings where a variety of information (including phase) is lost. Reconstruction therefore involves inverting highly nonlinear and seemingly non-invertible mappings. In this paper, we introduce a novel technique where the 3D object is directly reconstructed from an accurate non-linear propagation model. Furthermore, we characterize the ambiguities of this model and leverage a priori knowledge to mitigate their effect and also significantly reduce the required number of measurements and hence the acquisition time. We demonstrate the performance of our algorithm via numerical experiments aimed at nano-scale reconstruction of 3D integrated circuits. Moreover, we provide rigorous theoretical guarantees for convergence to stationarity. 
    more » « less